1.有关圆锥曲线
圆锥曲线年级:高二 科目:数学 时间:12/12/200921:11:36 新 6046469圆锥曲线中重要的知识点总结一下,还有一些经典例题。Gif 解:同学你好,老师提供以下资料供你参考,希望对你有所帮助: 一、圆锥曲线的定义 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即。 3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 二、圆锥曲线的方程。 1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2) 2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2) 3.抛物线:y2=±2px(p>0),x2=±2py(p>0) 三、圆锥曲线的性质 1.椭圆:+=1(a>b>0) (1)范围:|x|≤a,|y|≤b (2)顶点:(±a,0),(0,±b) (3)焦点:(±c,0) (4)离心率:e=∈(0,1) (5)准线:x=± 2.双曲线:-=1(a>0, b>0) (1)范围:|x|≥a, y∈R (2)顶点:(±a,0) (3)焦点:(±c,0) (4)离心率:e=∈(1,+∞) (5)准线:x=± (6)渐近线:y=±x 3.抛物线:y2=2px(p>0) (1)范围:x≥0, y∈R (2)顶点:(0,0) (3)焦点:(,0) (4)离心率:e=1 (5)准线:x=- 四、例题选讲: 例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。 解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。 注意:椭圆本身的性质(如焦距,中心到准线的距离,焦点到准线的距离等等)不受椭圆的位置的影响。 例2.椭圆+=1的离心率e=,则m=___________。 解:(1)椭圆的焦点在x轴上,a2=m,b2=4,c2=m-4,e2===m=8。 (2)椭圆的焦点在y轴上,a2=4,b2=m,c2=4-m,e2===m=2。 注意:椭圆方程的标准形式有两个,在没有确定的情况下,两种情况都要考虑,切不可凭主观丢掉一解。 例3.如图:椭圆+=1(a>b>0),F1为左焦点,A、B是两个顶点,P为椭圆上一点,PF1⊥x轴,且PO//AB,求椭圆的离心率e。 解:设椭圆的右焦点为F2,由第一定义:|PF1|+|PF2|=2a, ∵PF1⊥x轴,∴ |PF1|2+|F1F2|2=|PF2|2, 即(|PF2|+|PF1|)(|PF2|-|PF1|)=4c2, ∴ |PF1|=。 ∵PO//AB,∴ ΔPF1O∽ΔBOA, ∴ = c=ba=c, ∴ e==。 又解,∵PF1⊥x轴,∴ 设P(-c, y)。 由第二定义:=e|PF1|=e(x0+)=(-c+)=, 由上解中ΔPF1O∽ΔBOA,得到b=ce=。 例4.已知F1,F2为椭圆+=1的焦点,P为椭圆上一点,且∠F1PF2=,求ΔF1PF2的面积。 分析:要求三角形的面积,可以直接利用三角形的面积公式,注意到椭圆中一些量之间的关系,我们选用面积公式S=absinC。 解法一:SΔ=|PF1|·|PF2|·sin |PF1|+|PF2|=2a=20, 4*36=4c2=|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos, 即(|PF1|+|PF2|)2-3|PF1||PF2|=4*36, |PF1|·|PF2|= ∴ SΔ=**=。 解法二:SΔ=|F1F2|·|yP|=*12*yP=6|yP|, 由第二定义:=e|PF1|=a+exP=10+xP, 由第
2.有没有专门介绍圆锥曲线的书要知道更多关于圆锥曲线的渊源,请阅读阿波罗尼奥斯的《圆锥曲线论》汉译本(已由陕西科技出版社出版,两本:1-4卷,大32K精装,定价38.00元;5-7卷,16开,平装,373页,定价68.00元)。
阿波罗尼奥斯的《圆锥曲线论》是古希腊时期的著作,是用纯几何的方法研究圆锥曲线的,和现在方法不同。现在都是在平面坐标系里用代数的方法来研究圆锥曲线的。所以中学生就不要看了。 老师可以抽暇学习研究,提高对解析几何的理解。
也可以在百度文库下载《阿波罗尼奥斯圆锥曲线论5-7卷》汉译者序阅读,了解阿波罗尼奥斯的《圆锥曲线论》内容大要。